Introducing of an orthogonally relation for stability of ternary cubic homomorphisms and derivations on C*-ternary algebras
نویسندگان
چکیده
منابع مشابه
Stability and hyperstability of orthogonally ring $*$-$n$-derivations and orthogonally ring $*$-$n$-homomorphisms on $C^*$-algebras
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
متن کاملHomomorphisms and Derivations in C-Ternary Algebras
and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...
متن کاملStability and superstability of homomorphisms on C∗−ternary algebras
In this paper, we investigate the stability and superstability of homomorphisms on C∗−ternary algebras associated with the functional equation f( x+ 2y + 2z 5 ) + f( 2x+ y − z 5 ) + f( 2x− 3y − z 5 ) = f(x).
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2018
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1804439r